Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 397: 130460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373505

RESUMO

A novel efficient pretreatment system containing alkaline deep eutectic solvent (DES) and tetrahydrofuran (THF) was developed in the present study. Under pretreatment conditions of 160 ℃ and 1 h, DES-THF pretreatment was more efficient (81.61%) in cellulose digestibility improvement than DES (choline chloride/monoethanolamine, 67.54%). To further explore lignin structural transformation and lignin-cellulase interaction after pretreatment, milled wood lignin (MWL) was extracted and characterized. Compared with DES-MWL, DES-THF-MWL showed an increased carboxyl group content (24.0%) and decreased condensed phenolic hydroxyl content (9.1%). In DES-MWL, ß-O-4 content was 21.79%, while in DES-THF-MWL, ß-O-4 accounted for 45.45%, indicating that the addition of THF alleviated cleavage of ß-O-4 alkyl ether bonds. Fluorescence emission spectroscopy results showed that quenching mechanism of DES-THF-MWL and cellulase was dynamic, which was different from other lignin. Compared with DES-MWL, decreased Ka between DES-THF-MWL and cellulase indicated decreasing interaction between them. DES-THF pretreatment provides a novel pretreatment method for bioenergy.


Assuntos
Celulase , Lignina , Lignina/química , Triticum , Solventes Eutéticos Profundos , Solventes/química , Hidrólise , Biomassa
2.
Bioresour Technol ; 385: 129461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423545

RESUMO

Valorization of lignocellulose has received a lot of attention due to the abundance of lignocellulosics. It was showed that synergistic carbohydrate conversion and delignification could be achieved via ethanol assisted DES (choline chloride/lactic acid) pretreatment. To explore the reaction mechanism of lignin in the DES, milled wood lignin obtained from Broussonetia papyrifera was subjected to pretreatment at critical temperatures. The results suggested that ethanol assistance could contribute the incorporation of ethyl groups and reduce condensation structures of Hibbert's ketone. Adding ethanol at 150 °C not only decreased formation of condensed G unit (from 7.23% to 0.87%), but also removed J and S' substructures, thus effectively reducing the adsorption of lignin on cellulase, and promoting the glucose yield after enzymatic hydrolysis.


Assuntos
Etanol , Lignina , Lignina/química , Solventes , Solventes Eutéticos Profundos , Hidrólise , Biomassa
3.
Front Bioeng Biotechnol ; 10: 1115469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698646

RESUMO

Introduction: A combination of deep eutectic solvent with ethanol was developed for pretreatment of Broussonetia papyrifera to effectively extract lignin and promote the subsequent enzymatic hydrolysis. Methods: In order to further explore the optimal conditions for enzymatic hydrolysis, a central composite design method was applied. Results and Discussion: The correlation between each factor and glucose yield was obtained, and the optimal conditions was 160°C, 60 min, the ratio of DES to E was 1/1 (mol/mol). The results showed that compared with control, the glucose yield increased by 130.67% under the optimal pretreatment conditions. Furthermore, the specific surface area of biomass was increased by 66.95%, and the content of xylan and lignin was decreased by 86.71% and 85.83%. The correlation between xylan/lignin removal and enzymatic hydrolysis showed that the removal of lignin facilitated the glucose yield more significantly than that of xylan. To further explore the lignin valorization, the structural and antioxidant analysis of recovered lignin revealed that high temperature was favorable for lignin with good antioxidant performance. This pretreatment is a promising method for separating lignin with high antioxidant activity and improving cellulose digestibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...